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Abstract. The transport properties of a swarm of charged test particles in a
rarefied neutral gas subjected to time-dependent and nonuniform external field
are studied within the framework of the linear Boltzmann equation (BE). We
develop a new theoretical approach for the description of the pre-hydrodynamic
stage of evolution of charged particle swarms. The initial value problem of
the BE is studied by using the time-dependent perturbation theory generalized
to non-Hermitian operators. The main result of this paper is a generalized
diffusion equation (GDE) valid for all times, with an infinite set of transport
coefficients which are expressed in terms of the solutions of a hierarchy of coupled
linear integrodifferential equations. It is established that the time derivatives of
spatial moments of the number density can be expressed as spatial moments of
generalized transport coefficients.
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1. Introduction

Transport theory of charged particle swarms plays a fundamental role in understanding the
physics of discharges, gas lasers, radiation detectors, ionospheric phenomena, planetary
atmospheres and modern technologies associated with various gas discharges [1]–[4]. The
studies of the short-time development (non-hydrodynamic regime) of charged particle
swarms both in time-dependent and spatially nonuniform electric field are important
in many applications such as high speed switching techniques, neutral and ion beam
sources, and gas phase chemical reactions using hot electrons. In swarm physics, the
studies of the approach to the hydrodynamic regime [5]–[10] are important in the design
of swarm experiments to ensure that the measured transport coefficients correspond to the
theoretical calculations obtained by means of a hydrodynamic assumption in the solution
of the Boltzmann equation.

The non-hydrodynamic description of charged particle transport in nonuniform
electric fields [11]–[13] is of primary importance for the modelling of gas-filled proportional
counters [14]. In a typical example, the amplification of the gain signal in the gas counters
is determined by the behaviour of electron ionization processes in the cylindrically or
spherically symmetric electric field around a thin wire or tiny sphere anode.

In this paper, we present the Boltzmann equation description for the charged particle
swarm under the influence of a time-dependent and nonuniform external field. One of
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the purposes of this paper is to develop a unified analysis of the transport properties of
charged particle swarms in both hydrodynamic and non-hydrodynamic regimes by the
Boltzmann equation method. An additional purpose is to give a new insight to the basic
theoretical research of the short-time development of charged particle swarms.

A swarm is the name given to an ensemble of independent charged particles moving
through a background of dilute neutral gas molecules. The number density of the swarm
is so low that both mutual interactions between the charged particles and the influence
of the swarm on the neutral gas distribution can be neglected. The behaviour of the
swarm is then determined by the interactions between the charged particles and the
neutral molecules and by the forces exerted by externally applied electric and magnetic
fields. This ensemble of charged particles can be described by the one-particle distribution
function f(�r, �v, t), where �r and �v denote respectively the position and velocity coordinates
of a swarm particle, and t is the time. The knowledge of f(�r, �v, t) yields all physically
measurable quantities of swarm particles. The one-particle distribution function can be
found from the corresponding Boltzmann equation (BE) [15][

∂

∂t
+ �v · ∂

∂�r
+ �a · ∂

∂�v

]
f(�r, �v, t) = J [f ](�r, �v, t), (1.1)

where vector �a is the acceleration on a particle produced by external electric �E(�r, t) and/or

magnetic �B(�r, t) fields, which are both space and time dependent. The collision integral
J [f ] represents the rate of change of f due to collisions. The collision processes can be
elastic and inelastic, particle conserving processes and non-conservative collisions (e.g.,
attachment and ionization). The operator J is an integral operator whose explicit form
is given elsewhere [15]–[17]. The collision operator J maps the function f onto another

function, say f̃ , f → f̃ = J [f ] and depends functionally on the neutral gas distribution
function and scattering cross sections. By virtue of the low charged particle concentrations
it is a linear operator which acts on f only through its �v dependence. The operator J
is local in space and in time. This allows us to make use of the vast array of techniques
available for linear operators.

Here a basis for non-hydrodynamic transport theory of charged particle swarms
in a nonuniform external field is reported. The analytical method we follow parallels
our previous work on the transport theory of granular swarms [18]. Using the time-
dependent perturbation theory generalized to non-Hermitian operators [10], we construct
a transport theory of swarm particles as an initial value problem for a linear Boltzmann
kinetic equation. Our definition of the transport coefficients for swarm particles is
applicable for arbitrary non-stationary and nonuniform external fields. We shall also
provide evidence that our proposed method can be used to obtain a deeper understanding
of the relationship between the initial conditions and the time dependence of the transport
coefficients and of the one-particle distribution function. Special emphasis will be put on
the relationship between the time derivatives of spatial moments of the number density
and transport coefficients. This is important in order to implement the calculation of
transport coefficients in a non-hydrodynamic regime by means of the direct simulation
Monte Carlo method. For these reasons, the theory presented in this paper is not only a
conceptual generalization of the hydrodynamic transport theory, but also, we believe, is
a significant advancement in the still rather unexplored areas of the large domain of the
particle kinetic and transport theory.
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The outline of the paper is as follows. In section 2 the initial value problem for
the linear Boltzmann kinetic equation is introduced and the corresponding transport
theory is developed. In section 3 we derive the non-hydrodynamic extension of the
diffusion equation, and establish the connection between swarm particle flux and transport
coefficients in the presence of the non-conservative collision processes. Section 4 is devoted
to the analysis of the long-time behaviour of the transport coefficients. Finally, in the
conclusion, we summarize our main results. Some technical details of the calculations are
given in the appendices.

2. Preliminaries

In this section we introduce the initial value problem for the Boltzmann kinetic
equation (1.1) and develop its formal solution. We study the solution of this equation for
a system of infinite volume, assuming that the one-particle distribution function f(�r, �v, t)
and its derivatives all vanish at large �r. This allows us to apply Fourier transform to
equation (1.1) to obtain

∂

∂t
Φ�q(�v, t) = L�q(t)Φ�q(�v, t), (2.1)

where Φ�q(�v, t) is the spatial Fourier transform of the one-particle distribution function

Φ�q(�v, t) =

∫
d�r e−i�q·�rf(�r, �v, t). (2.2)

In equation (2.1) the operator L�q(t) is

L�q(t) = M�q(t) + P�q, (2.3)

with

M�q(t)Φ�q(�v, t) = − 1

(2π)3

1

m
�F�q(t) ·

∂

∂�v
� Φ�q(�v, t) + JΦ�q(�v, t), (2.4)

P�qΦ�q(�v, t) = −i�q · �vΦ�q(�v, t). (2.5)

Above, �F�q(t) is the spatial Fourier transform of the external force acting on a swarm
particle of charge e and mass m. The symbol � denotes the convolution of the functions,
i.e.,

1

(2π)3

1

m
�F�q(t) ·

∂

∂�v
� Φ�q(�v, t) =

1

(2π)3

∫
d�q ′ 1

m
�F�q−�q ′(t) · ∂

∂�v
Φ�q ′(�v, t). (2.6)

In general a swarm of charged particles may undergo reactive interactions as well
as conservative collisions. Here we interpret a reactive collision as any collision which
produces a change in the number of swarm particles. In the present work we are interested
in unidirectional reactions, which are irreversible ones of the type swarm particle + gas
molecule → products, and lead to a net increase or decrease in particle numbers. If
reactions are present the collision operator J may be split into a particle-conserving JPC

and a reactive part JR, i.e. J = JPC + JR. Then we introduce the following operators:

MPC
�q (t) = M�q(t) − JR, MR

�q (t) = M�q(t) − JPC. (2.7)

J. Stat. Mech.: Theor. Exp. (2004) P06008 (stacks.iop.org/JSTAT/2004/P06008) 4

http://stacks.iop.org/JSTAT/2004/P06008


JS
TAT

(2004)
P

06008

Non-hydrodynamic transport theory of charged particle swarms in neutral gases

It is convenient to use an abstract linear vector space notation borrowed from quantum
mechanics. We interpret Φ�q(�v, t) as the velocity–space representation of the corresponding
proper vector |Φ�q(t)〉 in an abstract Hilbert space H, i.e., Φ�q(�v, t) = 〈�v|Φ�q(t)〉. In Hilbert
space H, the scalar (inner) product between two arbitrary vectors |ϕ〉 and |ψ〉 is defined
as

〈ϕ|ψ〉 =

∫
d�v

1

φ0(�v, t)
ϕ∗(�v)ψ(�v), (2.8)

where ϕ∗ denotes the complex conjugate of ϕ. Here φ0(�v, t) > 0 is an arbitrary scalar
function of �v and t. According to equation (2.8) we have

Î =

∫
d�v

1

φ0(�v, t)
|�v〉〈�v|, (2.9)

and

〈�v|�v ′〉 = φ0(�v
′
, t) δ(�v − �v

′
), (2.10)

where Î is the unit operator and δ is the delta function.

Likewise, a formal correspondence between operators L�q(t), M�q(t), MPC
�q (t), MR

�q (t)
and P�q, and linear operators on the Hilbert space H can be established:

M�q(t) → Ĥ0�q(t), MPC
�q (t) → ĤPC

0�q (t), MR
�q (t) → ĤR

0�q(t),

P�q → Ĥ ′
�q, L�q(t) = M�q(t) + P�q → Ĥ�q(t) = Ĥ0�q(t) + Ĥ ′

�q.
(2.11)

For instance, the convective operator Ĥ ′
�q = −i�q · �̂v acts on vector |ψ〉 ∈ H, according to

Ĥ ′
�q|ψ〉 =

∫
d�v

1

φ0(�v, t)
ψ(�v)(−i�q · �̂v)|�v〉, |ψ〉 ∈ H, (2.12)

where �̂v is a vector operator defined by its components v̂i, i = 1, . . . , 3 along three
orthogonal axes, and v̂i, i = 1, . . . , 3, are the usual multiplicative operators [19]. From
equations (2.12) and (2.10) it follows that the velocity–space representation of the Hilbert

space vector Ĥ ′
�q|ψ〉 is

ϕ(�v) = 〈�v|Ĥ ′
�q|ψ〉 = −i�q · �v ψ(�v). (2.13)

It is obvious that the convective operator Ĥ ′
�q is anti-Hermitian,

〈ϕ|Ĥ ′
�q|ψ〉 = −〈ψ|Ĥ ′

�q|ϕ〉∗, |ψ〉, |ϕ〉 ∈ H. (2.14)
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2.1. Initial value problem

After these technical preliminaries, we formulate the transport problem of swarm particles
starting from the abstract initial value problem:

∂

∂t
|Φ�q(t)〉 = Ĥ�q(t)|Φ�q(t)〉, |Φ�q(t0)〉 = |ΦI

�q〉, t � t0. (2.15)

Knowing that vector |ΦI
�q〉 represents a certain state of the swarm at time t = t0, we wish

to determine its state |Φ�q(t)〉 at a later time t. The problem, therefore, is to determine

the operator describing the evolution in time of the swarm particles in accordance with
the kinetic equation (2.15). The correspondence between |ΦI

�q〉 and |Φ�q(t)〉 is linear and

defines a linear evolution operator Û�q(t, t0):

|Φ�q(t)〉 = Û�q(t, t0)|ΦI
�q〉, t � t0. (2.16)

Since Ĥ�q is not a Hermitian operator, it is obvious that the evolution operator Û�q(t, t0) is
not unitary.

Our procedure, based on the time-dependent perturbation theory which has been
developed for Hermitian operators in quantum mechanics [19], is to determine the

evolution operator Û�q(t, t0) by perturbation calculus, considering the operator Ĥ ′
�q as a

perturbation.
Let Û0�q(t, t0) be the evolution operator corresponding to the unperturbed operator

Ĥ0�q(t); consequently the operator Û0�q(t, t0) satisfies the differential equation

∂

∂t
Û0�q(t, t0) = Ĥ0�q(t)Û0�q(t, t0) = Û0�q(t, t0)Ĥ0�q(t), Û0�q(t0, t0) = Î . (2.17)

The evolution operator Û�q(t, t0) can be expressed in terms of the operator Û0�q(t, t0):

Û�q(t, t0) = Û
(0)
�q (t, t0) +

∞∑
p=1

Û
(p)
�q (t, t0), Û

(0)
�q (t, t0) = Û0�q(t, t0), (2.18)

Û
(p)
�q (t, t0) =

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tp−1

t0

dtp Û
(0)
�q (t, t1)Ĥ

′
�q

× Û
(0)
�q (t1, t2)Ĥ

′
�q · · · Û (0)

�q (tp−1, tp)Ĥ
′
�q Û

(0)
�q (tp, t0),

t � t1 � t2 � · · · � tp−1 � t0, p � 1. (2.19)

The steps in the evaluation of equations (2.18) and (2.19) that differ from the Hermitian
case are outlined in appendix A.

Using equations (2.16) and (2.18), one obtains the expansion of |Φ�q(t)〉,

|Φ�q(t)〉 =

∞∑
p=0

|Φ(p)
�q (t)〉, t � t0, (2.20)

where

|Φ(p)
�q (t)〉 = Û

(p)
�q (t, t0)|ΦI

�q〉, t � t0. (2.21)
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Inserting an explicit form of the convective operator Ĥ ′
�q = −i�q · �̂v into equation (2.19),

and by using equations (2.20) and (2.21), we find that the vector |Φ�q(t)〉 can be expressed
as

|Φ�q(t)〉 =

∞∑
p=0

(−i�q)p �p ‖κ
(p)
�q (t)〉〉, t � t0, (2.22)

where

‖κ
(0)
�q (t)〉〉 = Û

(0)
�q (t, t0)|ΦI

�q〉, t � t0, (2.23)

‖κ
(p)
�q (t)〉〉 =

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tp−1

t0

dtp Û
(0)
�q (t, t1)�̂v

× Û
(0)
�q (t1, t2)�̂v · · · Û (0)

�q (tp−1, tp)�̂vÛ
(0)
�q (tp, t0)|ΦI

�q〉,
t � t1 � t2 � · · · � tp−1 � t0, p � 1. (2.24)

The quantities (−i�q)p and ‖κ
(p)
�q (t)〉〉 are tensors of rank p. The notation ‖κ

(p)
�q (t)〉〉 signifies

that such an object is a tensor of rank p whose components are not the usual C-numbers,
but rather are vectors in the Hilbert space H. The symbol �p denotes the appropriate

p-fold scalar product, i.e., Â(p) �p B̂(p) =
∑

α1···αp
A

(p)
α1···αpB

(p)
α1···αp for any tensors Â(p) and

B̂(p) of rank p. The Cartesian components α1, . . . , αp = 1, 2, 3, p � 1, of the tensor (−i�q)p

are C-numbers given by

[(−i�q)p]α1,...,αp
= (−i)pqα1qα2 · · · qαp , (2.25)

while the components of tensors ‖κ
(p)
�q (t)〉〉 are vectors of the Hilbert space H given by[

‖κ
(p)
�q (t)〉〉

]
α1,...,αp

=

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tp−1

t0

dtp Û
(0)
�q (t, t1)v̂α1

× Û
(0)
�q (t1, t2)v̂α2 · · · Û

(0)
�q (tp−1, tp)v̂αp Û

(0)
�q (tp, t0)|ΦI

�q〉 ∈ H,

t � t1 � t2 � · · · � tp−1 � t0, p � 1. (2.26)

Expressions (2.22)–(2.24) represent a formal solution of initial value problem (2.15).
They allow us in principle to calculate the one-particle distribution function at time t if
its initial value is known. However, these formal expressions are of no great help until we

know how to operate with the evolution operator Û
(0)
�q (t, t0), which is very complicated

and cannot be evaluated in closed form. In order to circumvent this difficulty, we shall

develop the hierarchy of kinetic equations for determining the tensors ‖κ
(p)
�q (t)〉〉, p � 0.

3. Short-time development of charged particle swarms and transport coefficients

We now perform the first part of the program sketched in the introduction, namely,
deriving a hierarchy of kinetic equations for charged particle swarms. In addition, we
derive general expressions for the transport coefficients valid at all times, including the
initial non-hydrodynamic stage of the evolution of the swarm particles.

Taking the time derivative of equations (2.23) and (2.24), with the help of

equation (2.17), we find that the tensors ‖κ
(p)
�q (t)〉〉 obey the following hierarchy of coupled
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differential equations (see appendix B):

∂

∂t
‖κ

(0)
�q (t)〉〉 = Ĥ0�q(t)‖κ

(0)
�q (t)〉〉, ‖κ

(0)
�q (t0)〉〉 = |ΦI

�q〉, t � t0, (3.1)

∂

∂t
‖κ

(p)
�q (t)〉〉 = Ĥ0�q(t)‖κ

(p)
�q (t)〉〉 + �̂v ‖κ

(p−1)
�q (t)〉〉, ‖κ

(p)
�q (t0)〉〉 = 0, t � t0, p � 1.

(3.2)

The action of the vector operator �̂v = (v̂1, v̂2, v̂3) on tensor ‖κ
(p−1)
�q (t)〉〉, p � 1, raises its

rank by one, and is defined as[
�̂v‖κ

(0)
�q (t)〉〉

]
α1

= v̂α1‖κ
(0)
�q (t)〉〉, α1 = 1, 2, 3,[

�̂v‖κ
(p−1)
�q (t)〉〉

]
α1,...,αp

= v̂α1

[
‖κ

(p−1)
�q (t)〉〉

]
α2,...,αp

, α1, . . . , αp = 1, 2, 3, p � 2.
(3.3)

It is convenient to introduce an infinite set of tensors

N̂ (p)(�q, t) = 〈φ0(t)‖κ
(p)
�q (t)〉〉, p � 0. (3.4)

The quantities N̂ (p)(�q, t) are analogous to the spatial moments of the number density
n(�r, t) [15]. Since n�q(t) = 〈φ0(t)|Φ�q(t)〉, we get:

n�q(t) =
∞∑

p=0

(−i�q)p �p N̂ (p)(�q, t), t � t0. (3.5)

Finally, to set up our transport theory we define the transport coefficients by

∂

∂t
N̂ (p)(�q, t) = ω̂

(p)
�q (t)N̂ (0)(�q, t) +

p−1∑
r=0

ω̂
(r)
�q (t) ⊗ N̂ (p−r)(�q, t), p � 0, (3.6)

where ω̂
(r)
�q (t) denote tensor transport coefficients of rank r, and the symbol ⊗ denotes the

standard symmetrized outer tensor product defined as[
ω̂

(r)
�q (t) ⊗ N̂ (p−r)(�q, t)

]
i1,...,ip

=
1

p!

∑
(j1,...,jp)∈P (i1,...,ip)

[
ω̂

(r)
�q (t)

]
j1,...,jr

N
(p−r)
jr+1,...,jp

(�q, t). (3.7)

The summation in equation (3.7) extends over all of the indices (j1, . . . , jp) that are
permutations P (i1, . . . , ip) of the indices on the left-hand side.

It should be stressed that the �q dependence of the transport coefficients ω̂
(p)
�q , p � 0,

has its origin not only in the initial vector |ΦI
�q〉 (see equations (2.23) and (2.24)) but also

in external force �F�q(t). For a homogeneous external field, i.e., �F�q(t) = δ(�q)�FH(t), the
transport coefficients are time-dependent functionals of the initial conditions.

From definitions (3.6) and equation (3.5) it follows that

∂

∂t
n�q(t) −

∞∑
p=0

(−i�q)p �p ω̂
(p)
�q (t)n�q(t) = 0. (3.8)

Details of the derivation are given in appendix C. This last equation is often called the
generalized diffusion equation (GDE). It describes the temporal evolution of the n�q(t) in
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terms of an infinite set {ω̂(p)
�q |p � 0} of transport coefficients. The GDE (3.8) is valid for

all times and for arbitrary initial conditions.
Let us go back to configuration space. Fourier inversion F−1 of the GDE

(equation (3.8)) gives

∂

∂t
n(�r, t) −

∞∑
p=0

(
− ∂

∂�r

)p

�p

∫
d�r1 ω̂(p)(�r − �r1, t)n(�r1, t) = 0, (3.9)

where F−1
[
ω̂

(p)
�q (t)

]
≡ ω̂(p)(�r, t), p � 0. Previous equation (3.9) involves a non-local

dependence on the number density n(�r, t). Otherwise, the transport coefficients ω̂(p)(�r, t),
p � 0 connect the time evolution of n(�r, t) at an arbitrary point �r to its value at other
points.

The derivative with respect to time occurring in equation (3.6) can be eliminated with
the help of equations (3.1) and (3.2). Combining (3.4), (3.6) and (3.1), (3.2) we obtain

ω̂
(0)
�q (t) =

1

〈φ0(t)‖κ
(0)
�q (t)〉〉

〈φ0(t)|ĤR
0�q(t)‖κ

(0)
�q (t)〉〉, (3.10)

ω̂
(p)
�q (t) =

1

〈φ0(t)‖κ
(0)
�q (t)〉〉

[
〈φ0(t)|�̂v ‖κ

(p−1)
�q (t)〉〉 + 〈φ0(t)|ĤR

0�q(t)‖κ
(p)
�q (t)〉〉

−
p−1∑
r=0

ω̂
(r)
�q (t) ⊗ 〈φ0(t)‖κ

(p−r)
�q (t)〉〉

]
, p � 1. (3.11)

The details of this calculation are given in appendix D. For a given initial condition |ΦI
�q〉,

the kinetic equations (3.1) and (3.2) and expressions (3.10) and (3.11) determine both the

time-dependent tensors ‖κ
(r)
�q (t)〉〉 and the transport coefficients ω̂

(r)
�q (t) for all r � p and

p � 0.
Note that when non-conservative processes are present the calculation of a transport

coefficient of rank p requires solutions of the kinetic equations (3.1) and (3.2) up to order
p. In the absence of non-conservative processes, solutions of kinetic equations to the
order p − 1 suffice for the same purpose. We must bear in mind that, although the

reactions affect the transport coefficients ω̂
(r)
�q (t) explicitly through ĤR

0�q-dependent terms

in equations (3.10) and (3.11), they also have an implicit effect through the influence of

reactive collisions on tensors ‖κ
(p)
�q (t)〉〉.

3.1. Bulk and flux transport coefficients

Here we want to establish the connection between the swarm particle flux �Γ(�r, t) =∫
d�v �vf(�r, �v, t) and the transport coefficients ω̂

(p)
�q (t), p � 0. From definition (2.2) we

have that the Fourier transform of �Γ(�r, t) is given by

�Γ�q(t) = 〈φ0(t)|�̂v |Φ�q(t)〉. (3.12)

Inserting equation (2.22) into (3.12), we arrive at

�Γ�q(t) =

∞∑
p=0

(−i�q)p �p 〈φ0(t)|�̂v ‖κ
(p)
�q (t)〉〉. (3.13)
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From equations (3.13), (D.2) and (D.3), using definition (3.6) and equation (3.5), we
obtain

�Γ�q(t) =

∞∑
p=0

(−i�q)p �p Ω̂
(p+1)
�q (t)n�q(t), (3.14)

where

Ω̂
(p)
�q (t) = ω̂

(p)
�q (t) − R̂

(p)
�q (t), p � 1, (3.15)

R̂
(p)
�q (t) = − 1

n�q(t)
〈φ0(t)|

[
ω̂

(0)
�q (t)Î − ĤR

0�q(t)
]
‖κ

(p)
�q (t)〉〉, p � 1. (3.16)

For completeness we put Ω̂
(0)
�q (t) ≡ ω̂

(0)
�q (t).

In the present work we will refer to the Ω̂
(p)
�q (t) as the ‘flux ’ components of the transport

coefficients and the R̂
(p)
�q (t) as the ‘reactive’ components. The reaction-corrected transport

coefficients ω̂
(p)
�q (t) are often called ‘bulk ’ transport coefficients. In the absence of reactive

processes R̂
(p)
�q (t) vanishes for any p � 1, and the ‘bulk’ and ‘flux’ transport coefficients

become identical.
Applying the well-known convolution theorem for Fourier transforms on equa-

tion (3.14), we get immediately

�Γ(�r, t) =

∞∑
p=0

(
− ∂

∂�r

)p

�p

∫
d�r1 Ω̂(p+1)(�r − �r1, t)n(�r1, t), (3.17)

where F−1
[
Ω̂

(p)
�q (t)

]
≡ Ω̂(p)(�r, t), p � 1.

4. Space–time evolution of charged particles swarms

The objective of this section is to analyse the long-time behaviour of the transport

coefficients ω̂
(p)
�q (t), p � 0, and one-particle distribution function f(�r, �v, t).

Recently, we have analysed the foundations of the transport theory of charged particle
swarms in neutral gases in the presence of a static and uniform external electric field [10].

In that case, the corresponding unperturbed collision operator Ĥ0�q(t) (equation (2.11))

is both time and �q independent, i.e. Ĥ0�q(t) ≡ Ĥ0. We have performed an analysis of the

long-time behaviour of tensors ‖κ
(p)
�q (t)〉〉, p � 0. Except for minor technical details, our

strategy was the same as the one we followed in sections 2 and 3 to establish the generalized
diffusion equation (equation (3.8)) from the Boltzmann equation. The remarkable theorem
has been proved that a sufficient condition for the existence of a hydrodynamics regime

is the existence of an isolated eigenvalue ω̂
(0)
∗ of the operator Ĥ0 which is separated from

the rest of the spectrum by the gap along the real axis [5, 10]. Such an assumption
implies the separation of the relaxation timescale τ0 ∝ (d0)

−1 (d0 is the length of gap in
the spectrum), and the hydrodynamic timescale τh ∝ (q(kBT )1/2)−1 [20] (τh is the time
a swarm particle needs to travel the length of macroscopic gradients; kBT is the mean
random energy of a swarm particle). This means that in the long-time limit (t � τ0) all

J. Stat. Mech.: Theor. Exp. (2004) P06008 (stacks.iop.org/JSTAT/2004/P06008) 10

http://stacks.iop.org/JSTAT/2004/P06008


JS
TAT

(2004)
P

06008

Non-hydrodynamic transport theory of charged particle swarms in neutral gases

ω̂
(p)
�q (t) become time and �q independent in the same characteristic time and achieve their

hydrodynamics values:

ω̂
(p)
�q (t) � ω̂(p)

∗ , t � τ0, p � 0. (4.1)

The transport coefficients ω̂
(p)
∗ can be expressed in terms of microscopic quantities [10]:

ω̂(0)
∗ = 〈ψ̃(0)

n̄ |Ĥ0‖χ(0)
n̄ 〉〉, ω̂(p)

∗ = 〈ψ̃(0)
n̄ |�̂v ‖χ(p−1)

n̄ 〉〉, p � 1, (4.2)

where

‖χ(0)
n̄ 〉〉 = |ψ(0)

n̄ 〉, ‖χ(1)
n̄ 〉〉 = [ω̂(0)

∗ − Ĥ0]
−1Q̂ �̂v ‖χ(0)

n̄ 〉〉,

‖χ(p)
n̄ 〉〉 = [ω̂(0)

∗ − Ĥ0]
−1Q̂

[
�̂v ‖χ(p−1)

n̄ 〉〉 −
p−1∑
r=1

ω̂(r)
∗ ⊗ ‖χ(p−r)

n̄ 〉〉
]

, p � 2.
(4.3)

The vectors |ψ(0)
n̄ 〉 and |ψ̃(0)

n̄ 〉 are eigenvectors of the operator Ĥ0 and its adjoint operator Ĥ†
0

respectively, corresponding to the nondegenerate isolated eigenvalue ω̂
(0)
∗ . The operator

Q̂ = Î − |ψ(0)
n̄ 〉〈ψ̃(0)

n̄ | is a projector (but not orthogonal) onto subspace complementary

to the subspace spanned by the basic eigenvector |ψ(0)
n̄ 〉. Previous results show that

hydrodynamic behaviour is always linked to the forgetting of the initial conditions through
the relaxation.

Finally, we have shown under previous assumptions that after time t � τ0, the one-
particle distribution function |f(�r, t)〉 (i.e. the solution of the initial value problem (2.15))
is given by [10]

|f(�r, t)〉 =

∞∑
p=0

‖χ(p)
n̄ 〉〉 �

(
− ∂

∂�r

)p

eω̂
(0)
∗ t

∫
d�q c

0(I)
n̄ (�q) × e+i�q·�r

∞∏
s=1

e(−i�q)s� ω̂
(s)
∗ t, t � τ0.

(4.4)

The coefficients c
0(I)
n̄ (�q) = 〈ψ̃(0)

n̄ |ΦI
�q〉 depend on �q through their dependence on the

initial state of the swarm |ΦI
�q〉. In standard hydrodynamic theories this was always one

of the basic assumptions, together with the assumption of the validity of the GDE. In
the present theory both are results of more fundamental assumptions on the spectral
properties of operators involved in the Boltzmann equation.

Our perturbation formalism (sections 2 and 3) describes the transport phenomena
produced by external forces with arbitrary space and time variations. To extract any

information about the long-time behaviour of either the transport coefficients ω̂
(p)
�q (t),

p � 0 or the one-particle distribution function f(�r, �v, t), we must analyse the asymptotic

behaviour of the tensors ‖κ
(p)
�q (t)〉〉, p � 0. The tensors ‖κ

(p)
�q (t)〉〉 involve the evolution

operator Û0�q(t, t0), which is very complicated and cannot be evaluated in closed form. For
this reason it is difficult to analyse the long-time behaviour of transport coefficients for
arbitrary initial conditions. In the discussion that follows, we assume an initial distribution
of the form

|ΦI
�q〉 = |f0〉 n�q(t0). (4.5)
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Inserting this initial value into equations (2.23) and (2.24) we obtain

‖κ
(p)
�q (t)〉〉 = ‖ξ(p)

�q (t)〉〉n�q(t0), p � 0, t � t0, (4.6)

where

‖ξ(0)
�q (t)〉〉 = Û

(0)
�q (t, t0)|f0〉, t � t0, (4.7)

‖ξ(p)
�q (t)〉〉 =

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tp−1

t0

dtp Û
(0)
�q (t, t1)�̂v

× Û
(0)
�q (t1, t2)�̂v · · · Û (0)

�q (tp−1, tp)�̂v Û
(0)
�q (tp, t0)|f0〉,

t � t1 � t2 � · · · � tp−1 � t0, p � 1. (4.8)

Hence, the tensors ‖ξ(p)
�q (t)〉〉, p � 0, are independent of the spatial part of the initial

state (4.5). From equations (3.10), (3.11) and (4.6) we conclude that the spatial

dependence of the transport coefficients arises only from their implicit dependence on
the inhomogeneous external field.

For a spatially homogeneous but time-dependent external field, �F�q(t) = δ(�q)�FH(t), we

find that all transport coefficients ω̂
(p)
�q (t), p � 0, become �q independent, i.e.,

ω̂
(p)
�q (t) ≡ ω̂(p)(t), p � 0, t � t0. (4.9)

From equations (3.15), (3.16) and (4.6) we obtain that the flux transport coefficients Ω̂
(p)
�q ,

p � 1 also become �q independent when the velocity and space–time dependence of the
initial conditions separate:

Ω̂
(p)
�q (t) ≡ Ω̂(p)(t) = ω̂(p)(t) − R̂(p)(t), p � 1, t � t0,

R̂
(p)
�q (t) ≡ R̂(p)(t) = −〈φ0(t)|

[
ω̂(0)(t)Î − ĤR

0 (t)
]
‖ξ(p)(t)〉〉, p � 1, t � t0,

(4.10)

where the tensors ‖ξ(p)(t)〉〉, p � 1, are �q independent. Fourier inversion F−1 of
equations (4.9) and (4.10) gives

F−1
[
ω̂

(p)
�q (t)

]
≡ ω̂(p)(�r, t) = ω̂(p)(t) δ(�r), p � 0, t � t0,

F−1
[
Ω̂

(p)
�q (t)

]
≡ Ω̂(p)(�r, t) = Ω̂(p)(t) δ(�r), p � 1, t � t0.

(4.11)

According to equation (4.11), from equations (3.9) and (3.17) we get immediately the
generalized diffusion equation [15, 16]

∂

∂t
n(�r, t) −

∞∑
p=0

ω̂(p)(t) �p

(
− ∂

∂�r

)p

n(�r, t) = 0, (4.12)

and an expression for the swarm particle flux

�Γ(�r, t) =

∞∑
p=0

Ω̂(p+1)(t) �p

(
− ∂

∂�r

)p

n(�r, t). (4.13)

These equations are exact for all times if the initial condition separates the velocity and
space–time dependences (equation (4.5)).
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To make some further points about the nature of the transport coefficients, we now
derive expressions which relate the transport coefficients ω̂(p)(�r, t), p � 0, with the time
derivatives of the spatial moments of the number density n(�r, t). Let ψ(�r) be any function
of �r and let us define

〈ψ(�r)〉n ≡ 1

N(t)

∫
d�r ψ(�r)n(�r, t), N(t) =

∫
d�r n(�r, t). (4.14)

Assuming that n(�r, t), together with its derivatives, vanish at |�r| → ∞, we obtain from
equation (3.9) the following equation for the time development of the averages 〈ψ(�r)〉n:

∂

∂t
〈ψ(�r)〉n +

1

N(t)

dN(t)

dt
〈ψ(�r)〉n − 1

N(t)

∞∑
p=0

∫
d�r1 ω̂(p)(�r1, t)

�p

∫
d�r n(�r − �r1, t)

(
∂

∂�r

)p

ψ(�r) = 0. (4.15)

The details of the derivation of equation (4.15) are given in appendix E.
If ψ(�r) is a polynomial of order s in �r, then in equation (4.15) only the transport

coefficients of order p � s occur. Taking successive moments (ψ(�r) = 1, �r, �r⊗�r, . . .), after
some algebra (see appendix F) we have

1

N(t)

dN(t)

dt
=

∫
d�r ω̂(0)(�r, t), (4.16)

d

dt
〈�r〉n =

∫
d�r ω̂(1)(�r, t) −

∫
d�r ω̂(0)(�r, t)�r, (4.17)

and

1

2

d

dt
(〈�r ⊗ �r〉n − 〈�r〉n ⊗ 〈�r〉n)

=

∫
d�r ω̂(2)(�r, t) ⊗ 1 −

∫
d�r ω̂(1)(�r, t) ⊗ �r + 1

2

∫
d�r ω̂(0)(�r, t)�r ⊗ �r, (4.18)

where the operation ⊗ has its usual meaning as defined in equation (3.7). Thus, the
temporal evolution of the spatial moment of number density of sth order depends on the
generalized transport coefficients ω̂(p)(�r, t) of order 0 � p � s.

Let us consider the time derivatives of the spatial moments of the number density
for the case of a spatially homogeneous external field �FH(t). We limit ourselves again to
the case where the initial state f(�r, �v, t0) = f0(�v)n(�r, t0) separates the velocity and space–
time dependence (equation (4.5)). According to equation (4.11), from equations (4.16) to
(4.18) we get immediately the following expressions for the transport coefficients:

R(t) ≡ −ω̂(0)(t) = − 1

N(t)

dN(t)

dt
, (4.19)

�W (t) ≡ ω̂(1)(t) =
d

dt
〈�r〉n, (4.20)

D̂(t) ≡ ω̂(2)(t) =
1

2

d

dt
(〈�r ⊗ �r〉n − 〈�r〉n ⊗ 〈�r〉n) =

1

2

d

dt
〈(�r − 〈�r〉n) ⊗ (�r − 〈�r〉n)〉n . (4.21)

The above equations are exact for all times if the initial condition has the assumed form.
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Let us now return to the case of an external field which is uniform in space and
independent of time. We have seen that for the long-time limit all the transport coefficients
achieve their hydrodynamics values given by microscopic expressions (4.2). Consequently,
the corresponding averages in the equations (4.19)–(4.21) must be linear in time.

5. Concluding remarks

In the present work we have addressed the problem of the non-hydrodynamic transport
of a swarm of charged test particles in a neutral gas subjected to an arbitrary time-
dependent and nonuniform external field. Non-hydrodynamic effects may be important
at short times after emission from the source, close to boundaries or wherever the density
n(�r, t) varies rapidly over distances of the order of a mean free path and/or times of the
order of the mean free time between collisions [15].

Without specifying the collision operator, a linear Boltzmann equation was used to
describe the kinetics of the swarm particles in a dilute neutral gas. We have applied
the time-dependent perturbation method to study the evolution of the swarm from an
arbitrary initial distribution. The results presented here are not restricted to small
gradients in the density of swarm particles.

Several new aspects of charged particle transport theory have been introduced.

(1) The transport theory has been extended with the introduction of spatially dependent
transport coefficients.

(2) We have derived exact algebraic expressions for the transport coefficients
(equations (3.10) and (3.11)), which are valid for all times including the initial non-
hydrodynamic regime. Any transport coefficient can be represented as a function of
the solutions to the hierarchy of kinetic equations (equations (3.1) and (3.2)).

(3) We have obtained equation (3.8), which is a non-hydrodynamic extension of the
diffusion equation with transport coefficients that are time dependent and explicitly
depend on the wavevector.

(4) On the basis of these formulae we have discussed the asymptotic behaviour of
the generalized transport coefficients. We have established that our definition of
generalized transport coefficients is consistent with the hydrodynamic expressions for
transport coefficients in a space–time-independent external field (see equations (4.1)
and (4.4)).

(5) We have demonstrated the separation of the ‘flux’ and ‘reactive’ components of the
transport coefficients (equations (3.15) and (4.10)).

(6) We have established the connection between the time derivatives of the spatial
moments of the number density and the spatial moments of the generalized transport
coefficients (equations (4.16)–(4.18)).

The theory given here is for an infinite medium, with no boundaries. This is an
idealized situation. Future investigations of non-hydrodynamic effects, based on the
Boltzmann equation, should involve boundaries. When the effects of boundaries are
taken into account, a modification of the kinetic equation is needed. These effects may
be dealt with by introducing a boundary operator which can be specified by considering
an interaction potential of the boundary layer [15].
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Moreover, the formalism developed in this paper may be considered more generally
than only within the framework of the transport theory of charged particle swarms.
We need not confine ourselves to the strict usage of this theory for the Boltzmann
equation (1.1) with a collision integral as specified in the introduction. In other words, we
may use the derived equations for the case of an arbitrary kinetic equation with a linear
collision integral [18]. We hope that the formalism developed in this paper will be used
to solve various actual problems in related fields as well as in other fields in physics.
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Appendix A. Time-dependent perturbation method

The methods briefly described below are based on the time-dependent perturbation theory
which has been developed for Hermitian operators in quantum mechanics [19].

Let the linear operator Û�q(t, s) map the solution |Φ�q(s)〉 of equation (2.15) at time s
to the solution |Φ�q(t)〉 at time t � s:

|Φ�q(t)〉 = Û�q(t, s)|Φ�q(s)〉, t � s � t0. (A.1)

The uniqueness of the solution of equation (2.15) implies that the family of evolution

operators {Û�q(t, s)|t � s � t0} satisfies

Û�q(t, s)Û�q(s, r) = Û�q(t, r), t � s � r � t0,

Û�q(t, t) = Î , t � t0.
(A.2)

Furthermore, the evolution operator family {Û�q(t, s), t � s � t0} governing
equation (2.15) satisfies the following differential equations [21]:

∂

∂t
Û�q(t, s) = Ĥ�q(t)Û�q(t, s) = Û�q(t, s)Ĥ�q(t), Û�q(s, s) = Î

∂

∂s
Û�q(t, s) = −Û�q(t, s)Ĥ�q(s) = −Ĥ�q(s)Û�q(t, s), Û�q(t, t) = Î.

(A.3)

The evolution operator Û�q(t, t0) can be expressed in terms of the operator Ŝ�q(t, t0)
defined as

Û�q(t, t0) = Û0�q(t, t0)Ŝ�q(t, t0). (A.4)

Here Û0�q(t, t0) is the solution of equation (2.17). From equations (A.3), (2.17), and (A.4)

it follows that the time dependence of Ŝ�q(t, t0) is given by

∂

∂t
Ŝ�q(t, t0) = P̂�q(t)Ŝ�q(t, t0), Ŝ�q(t0, t0) = Î . (A.5)

Here the operator P̂�q(t) is the perturbation operator Ĥ ′
�q in the ‘interaction picture’:

P̂�q(t) = Û−1
0�q (t, t0)Ĥ

′
�q Û0�q(t, t0). (A.6)
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Equation (A.5) is equivalent to the integral equation

Ŝ�q(t, t0) = Î +

∫ t

t0

dt1 P̂�q(t1)Ŝ�q(t1, t0), (A.7)

which can be solved by iteration (in powers of P̂�q) yielding

Ŝ�q(t, t0) = Î +

∞∑
p=1

Ŝ
(p)
�q (t, t0), (A.8)

where

Ŝ
(p)
�q (t, t0) =

∫ t

t0

dt1 P̂�q(t1)

∫ t1

t0

dt2 P̂�q(t2) · · ·
∫ tp−1

t0

dtp P̂�q(tp),

t � t1 � t2 � · · · � tp−1 � t0, p � 1. (A.9)

From this result, with the aid of definitions (A.4) and (A.6), we get the expansion

(2.18) for Û�q(t, t0).

Appendix B. Derivation of the hierarchy of the kinetic equations (3.1) and (3.2)

We present here the detailed derivation of equations (3.1) and (3.2) only for p = 0, 1. By
induction, it is easy to verify equation (3.2) for arbitrary p > 1.

Differentiating (2.23) with respect to t, we use the identity (2.17) to obtain (3.1).
Taking the time derivative of (2.24), with the help of

Û
(0)
�q (t, t1) = Û

(0)
�q (t, t0)

[
Û

(0)
�q (t1, t0)

]−1

, t � t1 � t0, (B.1)

we get

∂

∂t
‖κ

(1)
�q (t)〉〉 =

[
∂

∂t
Û

(0)
�q (t, t0)

] ∫ t

0

dt1

[
Û

(0)
�q (t1, t0)

]−1

�̂v Û
(0)
�q (t1, t0)|ΦI

�q〉

+ Û
(0)
�q (t, t0)

[
Û

(0)
�q (t, t0)

]−1

�̂v Û
(0)
�q (t1, t0)|ΦI

�q〉, t � t1 � t0. (B.2)

Equation (3.2) for p = 1 follows immediately from equations (2.17), (B.1) and (B.2).

Appendix C. Derivation of the generalized diffusion equation (3.8)

Taking the time derivative of (3.5), with the help of definition (3.6) we get

∂

∂t
n�q(t) =

∞∑
p=0

(−i�q)p �p

[
ω̂

(p)
�q (t)N̂ (0)(�q, t) +

p−1∑
r=0

ω̂
(r)
�q (t) ⊗ N̂ (p−r)(�q, t)

]
. (C.1)

This expression can be transformed as follows:

∂

∂t
n�q(t) =

∞∑
r=0

∞∑
p=r

(−i�q)p �p

[
ω̂

(p−r)
�q (t) ⊗ N̂ (r)(�q, t)

]
. (C.2)

After some algebra, we readily obtain

∂

∂t
n�q(t) =

∞∑
p=0

(−i�q)p �p ω̂
(p)
�q (t)

∞∑
p=0

(−i�q)p �p N̂ (p)(�q, t). (C.3)

Inserting equation (3.5) into (C.3), we get GDE (3.8).
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Appendix D. Derivation of equations (3.10) and (3.11)

Since the time derivative of N̂ (p)(�q, t) is (see definition (3.4))

∂

∂t
N̂ (p)(�q, t) = 〈φ0(t)| ∂

∂t
‖κ

(p)
�q (t)〉〉, p � 0, (D.1)

we obtain from equations (3.1) and (3.2)

∂

∂t
N̂ (0)(�q, t) = 〈φ0(t)|Ĥ0�q(t)‖κ

(0)
�q (t)〉〉, (D.2)

∂

∂t
N̂ (p)(�q, t) = 〈φ0(t)|Ĥ0�q(t)‖κ

(p)
�q (t)〉〉 + 〈φ0(t)|�̂v ‖κ

(p−1)
�q (t)〉〉, p � 1. (D.3)

Now notice that the operator Ĥ0�q(t) contains two terms: the particle conserving term

ĤPC
0�q (t) and the ‘reactive’ term ĤR

0�q(t) (see equation (2.11)). Since

〈φ0(t)|Ĥ0�q(t)‖κ
(p)
�q (t)〉〉 = 〈φ0(t)|ĤR

0�q(t)‖κ
(p)
�q (t)〉〉 �= 0, p � 0, (D.4)

non-particle-conserving terms will survive in equations (D.2) and (D.3). Inserting
equation (D.4) into equations (D.2) and (D.3), with the help of definition (3.6), we arrive
at the expressions (3.10) and (3.11).

Appendix E. Derivation of equation (4.15)

Multiplying equation (3.9) by function ψ(�r) and integrating over �r, we obtain

∂

∂t

∫
d�r ψ(�r)n(�r) −

∞∑
p=0

∫
d�r1 ω̂(p)(�r1, t) �p

∫
d�r ψ(�r)

(
− ∂

∂�r

)p

n(�r − �r1, t) = 0. (E.1)

We suppose that n(�r, t) together with its derivatives vanish at the boundaries of the
domain of integration:(

∂

∂�r

)p

n(�r, t) → 0, |�r| → ∞; p � 0. (E.2)

By partial integration, we get immediately

∂

∂t

∫
d�r ψ(�r)n(�r, t) −

∞∑
p=0

∫
d�r1 ω̂(p)(�r1, t) �p

∫
d�r n(�r − �r1, t)

(
∂

∂�r

)p

ψ(�r) = 0. (E.3)

Using, in addition, equality

∂

∂t

∫
d�r ψ(�r)n(�r, t) = N(t)

∂

∂t
〈ψ(�r)〉n +

dN(t)

dt
〈ψ(�r)〉n , (E.4)

we readily obtain equation (4.15).
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Appendix F. Derivation of equations (4.16)–(4.18)

We demonstrate here formula (4.18). For ψ(�r) = rprq (p, q = 1, 2, 3), it is easy to show
that equation (4.15) reduces to

∂

∂t
〈rprq〉n +

1

N(t)

dN(t)

dt
〈rprq〉n − 1

N(t)

∫
d�r1 ω(0)(�r1, t)

∫
d�r n(�r, t)(rp − r1p)(rq − r1q)

− 1

N(t)

∫
d�r1 ω(1)

p (�r1, t)

∫
d�r n(�r, t)(rq − r1q) −

1

N(t)

∫
d�r1 ω(1)

q (�r1, t)

×
∫

d�r n(�r, t)(rp − r1p) −
∫

d�r1 ω(2)
qp (�r1, t) −

∫
d�r1 ω(2)

pq (�r1, t) = 0. (F.1)

Straightforward algebraic manipulations then lead to

∂

∂t
〈rprq〉n + TI(t) + TII(t) −

∫
d�r1 ω(0)(�r1, t)r1pr1q +

∫
d�r1 ω(1)

p (�r1, t)r1q

+

∫
d�r1 ω(1)

q (�r1, t)r1p −
∫

d�r1

[
ω(2)

qp (�r1, t) + ω(2)
pq (�r1, t)

]
= 0, (F.2)

where

TI(t) =
1

N(t)

[∫
d�r1 ω(0)(�r1, t)r1q −

∫
d�r1 ω(1)

q (�r1, t)

] ∫
d�r n(�r, t)rp, (F.3)

TII(t) =
1

N(t)

[∫
d�r1 ω(0)(�r1, t)r1p −

∫
d�r1 ω(1)

p (�r1, t)

] ∫
d�r n(�r, t)rq. (F.4)

According to equation (4.17) we have

TI(t) + TII(t) = − d

dt
〈rp〉n 〈rq〉n . (F.5)

Inserting this expression into equation (F.2), we readily obtain

d

dt

[
〈rprq〉n − 〈rp〉n 〈rq〉n

]
−

∫
d�r1 ω(0)(�r1, t)r1pr1q +

∫
d�r1 ω(1)

p (�r1, t)r1q

+

∫
d�r1 ω(1)

q (�r1, t)r1p −
∫

d�r1

[
ω(2)

qp (�r1, t) + ω(2)
pq (�r1, t)

]
= 0. (F.6)

From this result, with the aid of definition (A.4), we arrive at equation (4.18).
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