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Light scattering by spin excitations in copper-oxide-based materials
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In this paper we present a study of spin dynamics in CuO, Bi2CuO4 and CuGeO3 single crys-
tals using Raman spectroscopy. The measurements of polarized Raman scattering spectra
are performed in the temperature region from 10 to 300 K in various frequency ranges. We
found and assigned the lines in the spectra that belong to magnetically ordered phases. The
origin of these excitations, based on the temperature dependence of their energies, linewidths
and symmetry arguments, is given. Also, we present calculations of two-magnon intensities,
based on the densities of states, and compare them with experimental data.
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1. Introduction

The discovery of high-temperature superconducting oxides produced a great interest in the investigation
of the different properties of copper-oxide-based materials. Since the structure of the new superconducting
materials is quite complex, a better understanding of their physical properties may come from the study of the
simpler (less complex) structures that can be described as ‘initial oxides’ of high-temperature superconductors.
We follow this general idea and focus our attention on copper-oxide-based materials that do not belong to the
families of the insulating phases of high-temperature superconductors. In this paper we are mainly interested
in the magnetic properties of these crystals, since almost all high-temperature CuO-based superconductors
undergo an antiferromagnetic-superconducting phase transition upon doping. For a review see [.1].

The insulating phases of the superconductors are well understood concerning the magnetic ordering. They
show the existence of strong antiferromagnetically coupled CuO planes that are weakly interacting along the
third direction.

Light scattering experiments are used to study the spin dynamics of such two-dimensional magnetic struc-
tures [.2]. The results show quite unusual behaviour that is ascribed as coming from the low-dimensionality
of the interaction combined with the quantum value of the spinS= 1

2 [ .3]. The characteristic properties of
the two-magnon scattering features observed by the Raman scattering technique (light scattering in antifer-
romagnets is dominated by spin-pair excitation [.4]) are a spectral line-shape broadening compared with a
calculation based on the two-magnon approximation and the appearance of scattering in forbidden geometries.
Several different effects were proposed to explain these discrepancies: inclusion of quantum fluctuations [.5]
that are ignored in the two-magnon approximation, revision of the mechanism of the two-magnon–phonon
decay process [.6] and, most recently, inclusion of a resonant scattering process [.7].

Besides studying the magnetic interactions in the insulating phase, we also investigated the effects of
doping on the spin dynamics. All doped systems from insulating up to superconducting show appreciable spin
fluctuations. These effects are observed by a number of experimental techniques [.8]. Still, the importance
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of such a magnetic interaction in the electron-pairing mechanism is not known and remains one of the most
interesting problems in the physics of superconductors.

Here, we present a study of the spin dynamics in CuO, Bi2CuO4 and CuGeO3 single crystals using Raman
spectroscopy. Polarized Raman-scattering measurements are performed in the temperature region from 10
to 300 K in the various frequency ranges. We found and assigned the lines in the spectra that belong to
magnetically ordered phases. The origin of these excitations based on the temperature dependences of their
energies, linewidths and on symmetry arguments is given. Also, we present calculations of two-magnon
intensities, and compare them with data.

2. Experimental details

The Raman spectra were excited by the 5145 and 4880Å lines of an argon ion laser (the average power was
about 100 mW). The light was focused onto a sample using a cylindrical lens. The experimental geometry
was of a backscattering type with an aperturef of the collective objective of 1:1.4. The scattered light was
analysed using a Jobin Ivon monochromator, model U-1000, with 1800 grooves mm−1 holographic gratings.
As a detector, we used the Pelletier-effect cooled RCA 31034 A photomultiplier with a conventional photon-
counting system. The samples were held in a closed-cycle Leybold cryostat, equipped with a low-temperature
controller, Leybold model LTC-60, and evacuated by a turbopump.

3. Two-magnon approximation

In this section we outline the main steps in the calculation of the two-magnon intensities. The calculation
of the magnon intensities is non-trivial, since the exact ground state and excited states of the Heisenberg
hamiltonian are not known. The usual approximation is the replacement of the exact ground state by a N´eel
state together with an Anderson [.9] linear approximation for treatment of the excited states. The starting point
is writing down the Heisenberg hamiltonian in the form:

H = −
∑
i, j

Ji, j Si Sj + Anisotropy, (1)

where summation goes over all spins. For the moment we will not give the explicit form for the anisotropy
terms, since they will be discussed for each type of structure we consider. The use of the linear approximation
and the Holstein–Primakoff representation [.10] leads, by applying the standard diagonalization procedure, to
the spin-wave eigenvalues̄hω(k).

The second step for evaluating the two-magnon Raman intensities is the calculation of the correlation
function〈(χαβk )∗(χµνk )〉ω. The angular brackets denote an average over the fluctuations andχ

αβ

k are components
of a susceptibility tensor with the form:

χα,β(r) = χα,β0 (r)+
∑
µ

Kαβ,µ(r)Sµr +
∑
µ,ν

Gαβ,µν(r)Sµr Sνr +
∑
δδδ

∑
µν

Hαβ,µν(rδδδ)Sµr Sν
r+δδδ + · · · (2)

The first term is just the susceptibility in the absence of any magnetic excitations. The second two terms
involve spin operators at a single ionic siter and in the scattering process they describe the one-magnon
scattering. The last term in eqn (2) gives rise to two-magnon scattering in which a pair of magnons are created
or destroyed. This term involves the product of spin operators at different ionic sitesr andδδδ.

One of the simplest approaches for evaluating the correlation function is to use the Green’s function
formalism. From the Green’s function equation of motion (for any two operatorsX andY):

ω〈〈X;Y〉〉ω = 1

2π
〈[X,Y]〉 + 〈〈[X, H ]〉;Y〉ω, (3)
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and with the fluctuation-dissipation theorem:

〈XY〉ω = −2[n(ω)+ 1]Im〈〈X;Y〉〉ω, (4)

that relates the correlation function to the imaginary part of the corresponding Green’s function, we can finally
obtain the Green’s function for the two-magnon process and corresponding differential cross-section. The
two-magnon spectrum we calculate from a Green’s function with the form [.11]:

G(δδδ, δδδ′) = 〈〈P(δδδ); P(δδδ)〉〉ω, (5)

whereδδδ andδδδ′ are vectors connecting neighbouring spins andP(δδδ) is defined as:

P(δδδ) =
x∑
r

(Sx
r Sx

r+δδδ + Sy
r Sy

r+δδδ). (6)

Following the standard procedure [.11], the two-magnon cross-section becomes proportional to:

I two-magnon∼ Im

[
G0(ω)

1+ bG0(ω)

]
, (7)

whereG0(ω) corresponds to the non-interacting Green’s function:

ImG0 = Im

[
1

N

∑
k

888(k)
ω2− 4ω2(k)

]
= π

4N

∑
k

888(k)
ω(k)

δ(ω − 2ω(k)), (8)

and b describes the strength of the magnon–magnon interaction. The888(k) are weighting functions for
different polarized configurations and their evaluation requires knowledge of the magnetic structure in the
antiferromagnetic ordered phase. The symmetry factors in the case of Bi2CuO4 for different polarizations are
[.12]:

8(k) =
4 cos2(kxa) cos2(kya) for A1g

4 sin2(kxa) sin2(kya) B1g

4 sin2(kxa) cos2(kya) for Eg.
(9)

These functions are used in Section 4.2 for calculating the two-magnon light scattering intensities in Bi2CuO4.

4. Light scattering by spin excitation

4.1. CuO

There is special interest in the properties of the CuO crystal as it is incorporated in almost all high-TC

materials. The CuO crystallizes in the monoclinic space groupC6
2h and the whole three-dimensional network

is built from two sets of chains∞1[CuO4/2] running along the [1,1,0] and [1,1̄,0] directions [.13]. The neutron
scattering experiments showed antiferromagnetic ordering in CuO below 213 K [.14], but a more careful
analysis showed the existence of an incommensurate phase in the temperature region from 213 to 232 K [.15].
The spin dynamics of this oxide is also studied using inelastic neutron diffraction measurements [.16], as well
as using Raman spectroscopy.[17–.22]. According to these results few modes appear when the crystal is cooled
below the antiferromagnetic transition temperature. The Raman spectra of CuO single crystals were obtained
in the (110) plane in the temperature region from 10 to 300 K in the spectral region from 200 to 800 cm−1,
Fig. 1. Three modes at frequencies 302, 352 and 634 cm−1 correspond to phonon excitations and belong to
Ag and 2Bg symmetries, respectively. The mode at about 240 cm−1 has a magnetic origin according to its
frequency dependence as a function of the temperature [.17], and is believed to belong to the scattering of
the magnetic exciton, as its frequency cannot be reconciled with the spin-wave magnetic dispersion spectrum
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Fig. 1. The polarized Raman-scattering spectra of a CuO single crystal at a temperature ofT = 10 K for two different incoming lights
electric field vector orientations. Inset: The angle dependence of the mode intensities. The zero value of the angle corresponds toE‖c.

.

[ .15]. The symmetry of this mode is determined by analysing its intensity as a function of the angle between the
incoming light’s electric field vector and thec-axis. This dependence is given in the inset of Fig. 1. According
to the analysis of the Raman scattering tensors obtained from the (110) plane [.19,.21], trigonometric functional
dependences are expected for the intensity dependences of the modes. From such dependences, Fig. 1, we
assigned the 240 cm−1 mode to the Bg symmetry class.

Although the magnetic excitation Raman spectra does not give enough information for determining the
exchange integrals, the neutron scattering studies [.15] show the existence of the 3D antiferromagnetic inter-
action with the strong dominance of the magnetic superexchange interaction along the [101̄] direction. The
exchange integral associated with this direction is found to be around a value ofJ = 80 meV. The other two
integrals are an order of magnitude smaller. It was also shown that the anisotropy term in the hamiltonian is
not important as the experimental results do not display its signature.

4.2. Bi2CuO4

The properties of Bi2CuO4 have been extensively investigated in recent years as this crystal can be regarded
as one of the possible ‘impurity’ phases in the Bi–Sr–Ca–Cu–O system. The crystal structure of Bi2CuO4 is
tetragonal with isolated CuO4 square planar units of Cu2+ ions that are stacked on the top of each other in a
staggered manner along thec-axis [.23]. The Bi2CuO4 crystal exhibits 3DS= 1

2, antiferromagnetic ordering
below TN = 45 K [.24]. The spin waves were analysed using inelastic neutron scattering experiments [.25]
producing four superexchange constants, for fitting the magnon dispersion curves. The polarized Raman-
scattering spectra [.26] were measured in the spectral range between 10 and 640 cm−1, at various temperatures
between 10 and 300 K. TheT = 10 K andT = 300 K spectra inxx, xy, x′z andzzpolarized configurations
are presented in Fig. 2. The complete assignments of the observed modes have already been given in [.27].
The broad dominant feature observed inxx andx′z spectra, we assigned to a two-magnon mode because of
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its frequency dependence as a function of temperature and magnon symmetry selection rules [.28]. The small
peak denoted by an arrow in Fig. 2, forx′z polarization, comes from one-magnon scattering [.27]. Since the
one-magnon process gives the Brillouin-zone-center magnon frequency and the two-magnon process receives
its strongest contribution from the zone-edge magnons, we made a comparison between the features of the
scattered light spectrum and the magnon dispersion relation.

We used the Heisenberg anisotropy exchange hamiltonian [.12] in order to calculate the spin-wave dispersion
and the two-magnon density of states. We obtained the expression:

h̄ω(k) = 2S
√
(µ+ J11(k))2− (J12(k))2 (10)

where:

µ = (J12(0)+ D12(0)− J11(0)− D11(0)),

J11(J) = 2J1 cos(k · c),
J12(k) = 4 cos

(
k · a

2

)
cos

(
k · b

2

)√
(J2+ (J3+ J4) cos(k · c))2+ ((J4− J3) sin(k · c))2,

and

D11(0) = 2D1, D12(0) = 4(D2+ D3+ D4). (11)

The result of a two-magnon density of states (DOS) calculation is based on the above expressions and
eqn (9) and is presented in Figs 3 and 4. The evaluation of the two-magnon intensities is done using nu-
merical integration [.12] and the results are presented in Figs 3 and 4 in the case of B1g and Eg polarization
configurations.

The values of the exchange integrals are obtained by simultaneous fit of the neutron and Raman-scattering
data, and they are included in Fig. 3. According to the experiment, the A1g polarization configuration, although
allowed by the selection rules [.28] gives no noticeable two-magnon scattering, as the dominant contribution
of this type of scattering comes from the centre of the Brillouin zone (where there is a low two-magnon DOS).
The agreement between theory and experiment is both qualitative and quantitative, which suggest that the
two-magnon scattering spectra can be completely described using interacting spin-wave theory, although the
linear approximation is not rigorously applicable for spinS = 1

2. The values of the exchange integrals we
obtained are close to the values obtained by other authors [.26, .29] but the essential degeneracy of the magnon
branches is not produced by their results.

4.3. CuGeO3

The most recent discovery of the first inorganic material CuGeO3 with a spin–Peierls (SP) transition
[.30] provoked the re-examination of excitations in low-dimensional structures. The spin–Peierls transition,
occurring atT = 14 K, is followed by opening of a gap in the excitation spectra due to magnetoelastic coupling,
even though the 1D Heisenberg antiferromagnetic system has a gapless excitation spectra. The structure of
the CuGeO3 crystal is orthorhombic and the basic building blocks are corner-sharing GeO4 tetrahedra that
forms chains along thec-axis. The Cu atoms are surrounded by six O atoms, forming strongly deformed
CuO6 octahedra [.31]. The Raman spectra of CuGeO3 single crystals are measured.[32–.37] and unique spectra
concerning the magnetic excitations are obtained. At the temperatures below the SP transition, besides phonon
excitation, new peaks due to magnetic ordering appear. They are described as magnon-like excitations coming
from energy-gap-pair excitations in the centre and at the edge of the Brillouin zone [.37] with the value of
exchange integral along thec-direction ofJ = 5.3 meV. These results are in good agreement with the inelastic
neutron scattering measurements [.38, .39]. Above the SP transition, in the short-range-ordering regime, from
T = TSPto T ≈ 60 K, a very broad continuum is observed; see Fig. 5. These excitations are usually described
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Fig. 2. The Raman scattering spectra of Bi2CuO4 at various temperatures inxx, xy, x′z andzzpolarization configurations.
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as coming from fluctuations of the magnetic moments that are important in this quantum system,S = 1
2.

Unfortunately, the calculation does not fit the feature very well [.37] and so the origin of this broad excitation
spectrum is still under investigation.

5. Concluding remarks

Although the crystals we studied here started to be interesting because of the relevance to high-TC

superconducting materials, their optical properties are very interesting in their own right. It is still not clear
what is so important inside the layered structure of Cu–O planes that makes hole–superconducting pairing
possible at high temperatures, but it is believed that the answer is hidden somewhere inside the unique low-
dimensional properties of these crystals. Indeed some authors believe that Cu–O planes are not needed for
high-TC superconductivity, and classify Ba1−aKaPb1−bBibO3 as such a material.

Nevertheless, from this study, we found that the Cu–O structure incorporated in some materials may give
quite a unique variety of phenomena, from low-dimensional-type interactions up to almost textbook examples
of their optical properties.

The CuO crystal exhibits the layered structure that is usually formed in high-TC materials and it is anti-
ferromagnetic concerning the magnetic interaction but the optical spectra are not very rich with observable
excitations. Still there is a huge interaction between phonon and magnetic systems, according to the IR
measurements. Hence, these crystals require special attention and further study.

The Bi2CuO4 crystal exhibits 3D antiferromagnetic ordering with excitation spectra that can be completely
described using interacting, linear spin-wave theory, although the linear approximation is not rigorously
applicable for a system with spinS= 1

2.
Finally, the CuGeO3 crystal is the first inorganic material that exhibits one-dimensional magnetic ordering
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with a Peierls instability. Concerning the magnetic interaction, the question about excitation spectra above
the spin–Peierls transition temperature is still open.
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Matter4, 7913 (1992).
[28] .}.}M. J. Konstantinovi´c and Z. V. Popovi´c, J. Phys. Condens. Matter6, 10357 (1994).
[29] .}.}K. Murayama, K. Saikawa, and K. Motizuki, J. Fac. Sci. Shinshu Univ.29, 9 (1994).
[30] .}.}M. Hase, I. Terasaki, and K. Uchinoqura, Phys. Rev. Lett.70, 3651 (1993).
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[36] .}.}Z. V. Popović, S. D. Dević, V. N. Popov, G. Dhalenne, and A. Revcolevschi, Phys. Rev.B52, 4185 (1995).
[37] .}.}P. H. M. van Loosdrecht, J. P. Boucher, G. Martinez, G. Dhalenne, and A. Revcilevchi, Phys. Rev. Lett.

76, 311 (1996).
[38] .}.}L. P. Regnault, M. Ain, B. Hennion, G. Dhalenne, and A. Revcolevschi, Phys. Rev.B53, 5579 (1996).
[39] .}.}M. Nishi, O. Fujita, and J. Akimitsu, Phys. Rev.B50, 6508 (1994).


