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Band structure and questioned dimensionality of α′-NaV2O5
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Abstract. – α′-NaV2O5 is classified as a dimerized layered system with strongly interacting
d-electrons of vanadium ions. The derived band gaps, energy dispersion relations and density
of electronic states are in good agreement with available experimental and theoretical data.
The correlated band gap provides the insulating state of the high-temperature phase whereas
the state, earlier misinterpreted as the spin-Peierls state, is governed, in fact, by the opening
of the Coulomb gap.

The spin-Peierls phase transition was first observed in one-dimensional organic salts [1].
Since its discovery in CuGeO3 [2,3], there were a lot of efforts to find out a spin-Peierls behavior
in other inorganic materials. In the best studied α′-phase of NaV2O5 from the AVnO2n+1

family (A stands for alkali or alkali earth element) the opening of a spin gap ∆0 ∼ 80–110K
was observed at Tc ≈ 34–36K [4–6]. At present it has become evident that the spin-Peierls
scenario cannot adequately describe the properties of the α′-NaV2O5 oxide. A summary of
controversies is given in ref. [7].

The α′-NaV2O5 crystal with a Pmmn(D13
2h) symmetry contains the quarter-filled dimers

V4+(3d1)–V5+(3d0) (T < Tc) or V4,5+–V4,5+ (T > Tc), forming rungs of two-leg ladders in the
(a, b)-plane (fig. 1). Pyramides VO5–VO5 are arranged in layers made by vanadium ions and
basal oxygens separated by layers formed by Na and apical oxygens. The crystal field lifts the
t2g-degeneracy of the vanadium 3d-levels with the lowest energy of the dxy-orbital. Theoretical
models usually used for α′-NaV2O5 [8–11] are based on a spin-ladder picture. Local-density
analysis [12,13] has shown that bands near the Fermi energy are constructed mainly from the
dxy-orbitals and revealed the pronounced peaks in the density of electronic states (DOS). But
the computations could not establish the character of the band structure: does it have 1D, 2D
or 3D features? According to refs. [12,13] the Fermi level lies inside the conducting band thus
providing the metallic phase which is in disagreement with experimental observations. The
one-electron character of the “first principles” methods cannot take properly into account the
influence of many-body effects.
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Our approach is based on the hypothesis that the α′-NaV2O5 properties are governed by
the electron correlations U , ta (intrarung electron hopping integral), tb (hopping along legs in
crystallographic b-direction), td (diagonal hopping), txy (interrung hopping between vanadium
ions on nearest ladders) (fig. 1). The radial part of the dxy-electron wave function allows to
calculate hopping integrals as power series of (rB/a)2 [14]. The small parameter rB/a (a is
a lattice constant and rB is an ionic radius) enables us to evaluate roughly the V-V hopping
integral txy ∼ 0.06 eV as an average value between 0.1 eV (rB = 0.98 Å [8]) and 0.01 eV
(rB = 0.83 Å). The infrared reflectance studies of α′-NaV2O5 [15, 16] are suitable to extract
the intradimer hopping amplitude ta � 0.35 eV. The enhanced values of the ta,b,d hopping
integrals are influenced by intermediate oxygens. As for on-site interaction U , it is taken to be
infinite and somewhat weaker intersite Coulomb interaction simply shifts the on-site electron
energies in the charge-ordered phase.

In such a way, we classify the α′-NaV2O5 as a strongly correlated system and the present
approach is based on the energy scale U � ta > tb > td > txy, included in the Hubbard-like
Hamiltonian for vanadium dxy-electrons:

H = U
∑

i

N↑
i N↓

i +
∑
〈i,j〉

Ψ+
i t̂ij Ψj , (1)

where summation is over all unit cells. Ψ+ = (a+, b+, c+, d+, ...) and N↑ = (na, nb, nc, nd, ...)
are rows (just as Nambu spinors) with the k electron operators from a unit cell comprising
k-sites, columns Ψ and N↓ include k operators also, t̂ is a k-by-k fold matrix of electron
tunneling with elements ta,b,d,xy (see fig. 1). Then, one can carry out the fermion mapping
to X-operators [17,18] describing intravanadium transitions between the one-particle ground
and an empty polar states. Applying the X-operator machinery [14, 19], one can derive the
tight-binding energy bands for strongly correlated electrons. The applied technique considers
the tunnelling part of any correlated Hamiltonian as perturbation with respect to electron
correlations included in eigen values of the unperturbed part. The perturbation theory is
based on the generalized Wick’s theorem as an iteration procedure reducing the time-ordered
product of n X-operators to the product of n− 1 ones thereof. We consider first-order effects
aiming at comparing the derived electron spectra with the conventional tight-binding results
for non-interacting electrons which are done in the first order of the transfer energy. We
concentrate on the influence of band structure, which is of significance for multicomponent
compounds such as α′-NaV2O5.

The correlated energies ξ(p) have been extracted from zeros of the inverse Green’s function
D−1

0σ (iω, p) = D
(0)−1
0σ (iω) + Σ(p, iω) (Dyson equation) for spin σ, where the first-order self-

energy is the self-matrix of electron hopping: Σ(p, iω) = t̂(p). The zero-th Green’s functions
are such as D

(0)
0σ,k(iω) = fσ

k (−iωn + εk)−1, where εk labels electron energies on sites k of a unit
cell. The expectation value fσ

k = 〈Xσσ
k +X00

k 〉 = 1−nσ
k is said to be the correlation factor. It is

governed by an electron density on site k and provides the band narrowing. The arrangement
of dimers is closer to a triangular lattice and the calculations are based on the assumption
that the V2-rungs form an ideal triangular lattice. Below (above) Tc the α′-NaV2O5 is in an
ordered (mixed) valence phase.

At T < Tc, vanadiums are packed in sublattices a, b, c, d,m, n, p, q (fig. 1). The unit
cell Hamiltonian and D

(0)
0σ (iω) include zigzag-ordered dxy-electrons with on-site energy shifts

εa,d,q,m = −εb,c,n,p ≡ −ε, influenced by neighboring Coulomb repulsion V : ε = V ∆n (∆n is
the charge disproportionation on a rung V4+∆n/5−∆n). At positions a, b,m, n ( p, q, c, d ) the
dxy-electrons have spin projections down (up), respectively. At any charge disproportionation,
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Fig. 1 – View of α′-NaV2O5. Each dimer/rung is replaced by a circle. The inter(intra)dimer hopping
tb(ta) in the b (a)-direction is set along the y (x)-axis. The distances at room temperature between
the nearest V-ions on neighboring dimers/rungs are 3.04 Å and the leg constant is 3.61 Å. The dimer
size is 3.44 Å. Oxygen p-wave functions (opened) enhance the hopping td along ladder diagonals. For
T > Tc, the orthorhombic unit cell with two dimers is shown in the lower panel. For T < Tc, the
size of spin arrows (lower panel) reflects the charge disproportionation ∆n = na,d,m,q −nb,c,n,p in the
monoclinic unit cell; the shaded portions have a zigzag order.

Fig. 2 – The tight-binding energy dispersions for correlated dxy-electrons in α′-NaV2O5 below Tc

for parameters ta = 0.35 eV, tb = 0.15 eV, td = 0.1 eV, txy = 0.06 eV and ε = V ∆n (∆n = 0.8,
V = 0.8 eV [20]. Momenta are given in units

∣∣px

√
3
∣∣ = |py| = π of the Brillouine zone boundaries,

the Fermi energy, EF = 0, is inside the Coulomb gap ∆C = 1 eV. Four electrons from a monoclinic
unit cell occupy bonding branches completely.

the correlation factors are f↓
a,b,m,n = 1 − n↑

a,b,m,n = 1 (f↑
p,q,c,d = 1 − n↓

p,q,c,d = 1) inasmuch as
sublattices a, b,m, n ( p, q, c, d ) do not have electrons with spin projection up, n↑

a,b,m,n = 0
(down, n↓

p,q,c,d = 0). The perturbative tight-binding tunneling matrix is t̂(−→p ) =

a+

b+

p+

q+

c+

d+

m+

n+



0 −ta B D 0 A1 0 A
−ta 0 D B −txy 0 −txy 0
B∗ D∗ 0 −ta 0 A1 0 A1

D∗ B∗ −ta 0 C∗ 0 −txy 0
0 −txy 0 C 0 −ta B D

A∗
1 0 A∗

1 0 −ta 0 D B
0 −txy 0 −txy B∗ D∗ 0 −ta

A∗ 0 A∗
1 0 D∗ B∗ −ta 0


,
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with elements

A = −txy exp
[
−i

(√
3px − py

)]
, A1 = −txy exp

[
−i

(√
3px + py

)]
,

B = −tb (1 + exp [2ipy]) , D = −td (1 + exp [2ipy]) , C = −txy exp [2ipy] .

At chosen values ta = 0.35 eV, tb = 0.15 eV, td = 0.1 eV we have established that for txy ≥
48.8meV the electronic spectrum is gapless at ε = 0 and a repulsion V opens the insulating
Coulomb gap ∆C. The resulting energy dispersions are plotted in fig. 2. The flatness of
an antibonding band is caused by the diagonal intraladder hopping td. The ∆C is provided
by the zigzag ordered energies, ∓ε, parameters ta,xy and competing interdimer hoppings tb,d

(fig. 2). The Coulomb magnitude Vc ∼ 0.2 eV [11] at which the zigzag charge order starts to
develop, corresponds to our critical on-site energy shift εc = 28.56meV (disproportionation
∆n = 0.14) for txy = 0.06 eV. Note that for these parameters the Coulomb gap value coincides
with the critical temperature of the so-called “spin-Peierls” transition: ∆C (εc) = 35K. For
such incomplete disproportionation the charge order is expected to dominate in an energy
scale over a spin order. We have also established that a chain-type order for α′-NaV2O5,
εa,p,c,m = −εb,q,n,d ≡ −ε (cf. fig. 1), does not cause the ∆C formation, to trigger the phase
transition of interest.

For a single ladder (txy = 0) the energy dispersions have an analytical form:

ωα = 2αtd cos py ±
√

ε2 + (ta − 2αtb cos py)2 (α = +,−) , (2)

and at ε > (ta+2tb)
√

t2b − t2d/td the Coulomb gap is

∆C =
√

ε2 + (ta + 2tb)
2 +

√
ε2 + (ta − 2tb)

2 − 4td . (3)

Equation (3) is the ladder extension of the “charged-magnon” scenario used for a single
V4+–V5+ rung (tb,d = 0) in refs. [10,16].

At T > Tc the α′-NaV4.5+
2 O5 can be described by a half-filled Hubbard-like model for

bonding electrons with two dimers/sites in an orthorhombic unit cell (fig. 1). For U = ∞
an effective Anderson-Hubbard parameter of this model is simply the gain of the intradimer
kinetic energy 2ta. The electrons are distributed homogeneously with an electron density n = 1
per vanadium dimer and the correlation factors are fσ

k = 1 − n/2 = 1/2 (k = a − b, c − d).
Then the correlated-energy bands are formed by branches

ξα
p

tb + td
= ε±p + α

√
τ2 +

(
ε±p

)2
(

α = +,−; τ =
ta

tb + td

)
, (4)

with the calculated tight-binding non-correlated energies

ε±p = − cos py ± 2t cos
py

2
cos

px

√
3

2

(
t =

txy

2(tb + td)

)
. (5)

The lower, ξ−p , and the upper, ξ+
p , bands are split due to the presence of two V4.5+–V4.5+

dimers in a unit cell (Davydov-like splitting). The energy dispersions, eq. (5), with the ranges
−1 − 2t ≤ ε−p ≤ 1 and −1 ≤ ε+

p ≤ 1/2 + t reflect the main peculiarities of the reported
“spaghetti” pictures [12,13] rather well.
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Fig. 3 – High-temperature (T > Tc) DOS as a function of dimensionless energy ξ /(tb + td) (eq. (3)),
EF = 0 (main panel). The inset shows DOS for non-interacting bonding electrons as a function of
dimensionless energy from eq. (4) (cf. [12]). For energies L1 = −1−2t−S+T−, L2 = −1+2t−S+P−,
L3 = 1/2 + t − S + R−, L4 = 1 − S + Q−, U1 = −1 − 2t − S + T+, U2 = −1 + 2t − S + P+,
U3 = 1/2 + t − S + R+, U4 = 1 − S + Q+ parameters S, T±, P±, Q±, R± are given in eq. (6).

For dimensionless energies, ωα = ξα
p /(tb + td), the DOS is given analytically by

ρα (−1 − 2t − S + Tα ≤ ωα ≤ −1 + 2t − S + Pα) =

=
1

π2
√

kαt

[
1 +

q2
α

4 (α |ω| + S)2

]
K(qα) , (6)

ρα(−1 + 2t − S + Pα ≤ ωα ≤ 1 + S + Qα) =

=
1

π2qα

√
kαt

[
1 +

q2
α

4 (α |ω| + S)2

][
K

(
1
qα

)
ϑ(1 − S + Qα − ωα) +

+ F

(
arcsin

1
aα

;
1
qα

)
ϑ

(
1
2

+ t − S + Rα

)]
. (7)

Here ϑ is a Heaviside step function, S =
√

τ2 + (1 + 2t)2−√
τ2 + 1−t, Tα = α

√
τ2 + (1 + 2t)2,

Pα = α

√
τ2 + (1 − 2t)2, Qα = α

√
τ2 + 1, Rα = α

√
τ2 + (1/2 + t)2 and the elliptic inte-

grals F and K have modulus qα =
√

[2t (t + kα) + 1 − (ωα
0 )2]/kαt/2 and argument aα =√

kα (1 + ωα
0 ) (t + kα) /[2t (t + kα) + 1 − (ωα

0 )2], with kα =
√

2 (1 − ωα
0 ) + t2, ωα

0 = [(α |ω|
+S)2 − τ2]/[2 (α |ω| + S)]. Equations are valid if the ε+

p -band, eq. (5), is inside the ε−p -band,
i.e. at the realistic for α′-NaV2O5 constraint txy < tb + td. The overlap of the energy bands,
eqs. (4), (5), leads in fig. 3 to peculiarities in DOS at L3 = 1/2+t+R−−S, U3 = 1/2+t+R+−S
in the main panel and at 1/2 + t in inset. Logarithmic divergencies at ε = −1 + 2t and ε = 1
(inset), at L2 = −1 + 2t + P− − S and U2 = −1 + 2t + P+ − S (main panel) and the
peaks inside the bands are manifestations of 2D characteristics in the electron structure of
α′-NaV2O5 compound. In the limiting case of non-correlated electrons the total bandwidth
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4(tb + txy + td) = 0.8 eV coincides with the one in ref. [12] for the estimated hopping inte-
grals tb = 0.15 eV, txy = 0.06 eV (note, in ref. [12] td = 0). The lower branches ξ−p (eq. (4))
are completely occupied by the two electrons from an orthorhombic unit cell (fig. 1) and for
ta = 0.35 eV, td = 0.1 eV the correlated band gap (fig. 3)

∆g = min ξ+
p

(
ε−p

) − max ξ−p
(
ε+
p

)
=

√
t2a + (tb + td)2 +

√
t2a + (tb + td + txy)2 − 2 (tb + td) − txy (8)

acquires magnitude 0.34 eV.
In summary, the α′-NaV2O5 has been analyzed in the framework of the Hubbard-like

model. The analysis of the derived dispersions (4)-(5) and DOS (6)-(7) leads to the conclusion
about the presence of pronounced 2D features. At T < Tc the zigzag order redistributes
V4+/5+ ions and it is accompanied by the opening of the Coulomb gap ∆C (see fig. 2 and
eq. (3)). Its estimated magnitude ∆C � 1 eV corresponds to the observed strong absorption of
light [16]. At T > Tc the correlated band gap (8) provides an insulating state of α′-NaV2O5.
It is worth noting that electron correlations are responsible for properties of other spin-ladder
compounds: Sr14Cu24O41 [21] and SrCuO2 [22]. The studies, reported in ref. [23], give an
experimental evidence of the clear semiconducting behaviour of α′-NaV2O5 below and above
Tc with the increased dimensionality of an electron transport.

The electron energy dispersions (4) have two periodicities along the b-axis, in agreement
with ARPES data in NaV2O5 [24]. The hopping parameters td, txy cause exchange J-terms,
responsible for the splitting of magnon modes observed in inelastic neutron scattering [25–27].
If J constants are much smaller than electron hopping, the perturbative spin-dependent terms
provide a spin-charge separation for 1D Hubbard or t-J models [28]. From that point of view
this is an interesting interpretation of a temperature-induced modification of the ARPES
spectral intensity as an evidence of availability of spinon and holon Fermi surfaces [24, 29].
However the subsequent spectral analysis [30] rules out the possibility of spin-charge separation
in 2D t-J model (small J). Our study has revealed the importance of interladder couplings
in α′-NaV2O5 leading to 2D characteristics in the band structure.
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